Algorithms for Finite, Finitely Presented and Free Lattices

نویسنده

  • RALPH FREESE
چکیده

In this talk we will present and analyze the efficiency of various algorithms in lattice theory. For finite lattices this will include recognition of various properties such as subdirect irreducibility, semidistributivity, and boundedness (in the sense of McKenzie) as well as efficient algorithms for computing the congruence lattice. For free and finitely presented lattices we will discuss algorithms for such things as finding all the lower and upper covers of an element and recognizing if a finitely presented lattice is finite. Several interesting open problems will be given. We will also discuss how (computer implementations of) these algorithms have been used to prove results in various branches of lattice theory. I first became interested in computer programs to help with lattice theory when Nation and I were studying free lattices. Putting a lattice term into (Whitman) canonical form can be tedious, so we developed a program to do this and calculations in free lattices in general. This program was expanded to include finite and finitely presented lattices, congruence lattices, and automatic lattice drawing and proved extremely useful. As part of our book [12] on free lattices we decided to write a chapter on lattice algorithms for free lattices and those aspects of finite lattices related to free lattices. We expanded the chapter to include a general introduction to algorithms for lattices. We found the literature on this subject spread over both computer science and mathematical journals. Algorithms on directed graphs have been extensively developed and many are basic to ordered sets and algorithms from the theory of data bases play a role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely Presented Lattices: Continuity and Semidistributivity

In [3] we investigated finitely presented lattices and the closely related subject of lattices generated by a finite partial lattice. We described a canonical form for the elements of such a lattice and used this to study the covering relation. We showed that there is an effective procedure for finding the covers of any element of a finitely presented lattice. We gave an example of a finitely p...

متن کامل

Finitely Presented Lattices: Canonical Forms and the Covering Relation

A canonical form for elements of a lattice freely generated by a partial lattice is given. This form agrees with Whitman’s canonical form for free lattices when the partial lattice is an antichain. The connection between this canonical form and the arithmetic of the lattice is given. For example, it is shown that every element of a finitely presented lattice has only finitely many minimal join ...

متن کامل

FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES

The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...

متن کامل

A Finitely Presented Torsion-free Simple Group

We construct a finitely presented torsion-free simple group Σ0, acting cocompactly on a product of two regular trees. An infinite family of such groups has been introduced by Burger-Mozes ([2, 4]). We refine their methods and get Σ0 as an index 4 subgroup of a group Σ < Aut(T12)×Aut(T8) presented by 10 generators and 24 short relations. For comparison, the smallest virtually simple group of [4,...

متن کامل

Finitely Presented Heyting Algebras

In this paper we study the structure of finitely presented Heyting algebras. Using algebraic techniques (as opposed to techniques from proof-theory) we show that every such Heyting algebra is in fact coHeyting, improving on a result of Ghilardi who showed that Heyting algebras free on a finite set of generators are co-Heyting. Along the way we give a new and simple proof of the finite model pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999